
Reference

x86_64 Registers We’ve Used

rax Return values/expression results
rsp Stack Pointer, refers to return address at start of function, used to look up variables
rdi Holds 1st argument in “standard” x86-64 calling convention
rsi Holds 2nd argument in “standard” x86-64 calling convention
rdx Holds 3rd argument in “standard” x86-64 calling convention
rbx/rcx Used by us as temporary storage/for tag checking
r15 In our class convention, stores the address of the next free space to allocate

x86-64 Instructions

mov <reg>, <val> Move value to register
mov <mem>, <val> Move value to memory (val can be register or immediate)

push <val> Subtract 8 from rsp and store <val> at [rsp]
pop <reg> Load value from [rsp] into <reg> and add 8 to rsp

add/sub/imul <reg>, <val> Arithmetic
and/or/xor <reg>, <val> Bitwise operators
shr <reg>, <val> Shift <reg> right by <val> bits, filling with 0s
sar <reg>, <val> Shift <reg> right by <val> bits, maintaining sign bits
shl <reg>, <val> Shift <reg> left by <val> bits, filling with 0s

test <reg>, <val> Bitwise and <val> and <reg> for condition codes, reg unchanged
cmp <reg>, <val> Subtract <val> from <reg> and set condition codes, <reg> unchanged
cmove/cmovl/cmovne/... <reg1>, <reg2> Move the value from reg2 to reg1 if the condition codes match

<label>: Create a label (not really an instruction)
jmp <label> Unconditional jump
je/jne/jg/jge/jl/jle/jo <label> Conditional jumps based on condition codes

call <label> Push (as with push) the address of next instruction and jump to
<label>

ret Pop the stack (as with pop) and jump to it

qword Not an instruction, but a size modifier. Some instructions, like push
[r15], don’t know if it’s intended to move 1, 4, or 8 bytes. We’ve
often used qword to disambiguate which means 8 bytes.

5



Rust Reference

e >> n Shift e to the right by n bits. Do signed/unsigned shift based on type (e.g. i64
shifts signed, u64 shifts unsigned)

e1 & e2, e1 | e2 Bitwise operators
e as t Interpret the bits of the value e as type t. For example let num_unsigned = num

as u32; when num is i64 will reinterpret the lower 32 bits of the signed integer
as an unsigned one.

char A type in Rust, a single Unicode “scalar value”, 32 bits/4 bytes long.
v[..] Create a slice of a vector or string value v. Useful for pattern matching vectors

and for getting a &str from a String.
*v Access the memory at a raw pointer v, which must have a type like *mut T or

*const T. Must appear in an unsafe block
*v = e Assign the result of e into memory at the address given by raw pointer v, which

must be *mut T with e having type T
v.offset(n) For a raw pointer v, return a new raw pointer offset by n * size bytes, where

size is the number of bytes in the type of v
*mut T A raw pointer of type T that allows reading and mutation at the given address
*const T A raw pointer of type T that allows reading but not mutation at the given address
unsafe e Allows raw pointer manipulation inside the block (and other unsafe operations)
isize A type representing a size of some data. In this exam/in our programs, it’s OK

to freely convert (with as) between integer types like i64 and isize. Expected
as the argument for e.g. offset

6


